
Advanced GUI Design: Module 3! VSTGUI Custom Views 1!
Copyright © 2015 Will Pirkle

!
Creating VSTGUI Custom Views 1: Subclassing VSTGUI4 Objects!
Will Pirkle!!
VSTGUI4 includes a paradigm known as “custom views” to allow you to further customize the behavior of
any VSTGUI control. In RackAFX, it also allows you to create your own views (GUI items that display
information for the user such as an animation, audio waveform plot, FFT graph, etc…) and controls (GUI
items that transmit information when the user interacts with them). In this module, we will discuss sub-
classing VSTGUI4 controls to change their behavior!

!
VSTGUI4 Basics: Views and Controls!
VSTGUI4 GUI objects can loosely be classified as Views or Controls. A View is an object that is visible for
the user to see. A View delivers information to the user such as a graph of data, or the location of a knob
or slider. You can think of the View part as a one-way flow of information from the GUI to the user’s eyes.
A Control is a kind of View because it is also visible to the user and conveys information. However, a Con-
trol allows user interaction - for example, the user moves a knob control, and this transmits data back to
the plugin - this is a two-way communication path. !!!
VSTGUI4 Objects 1:!!
CView!
CControl!!
The CView object encapsulates the View attributes of a GUI object and the CControl object handles the
user interaction. In RackAFX there are several CView derived objects you can drag and drop into the GUI
Designer. These include CViewContainer, UIViewSwitchContainer and the CView object itself.The rest of
the GUI objects such as knobs, sliders, buttons, etc… are all derived from CControl and CControl is de-
rived from CView so it inherits all the CView attributes as well as attributes for generating control informa-
tion. !!
Here are some of the most common attributes and/or methods found on these two basic objects. When
you create your own Custom View objects, you typically override a few of these methods - in our exam-
ples we will only override two or three functions per objects. In most cases, this is all you will need.!!
CView!!
Method Description

draw() draws the object with primitive drawing methods

invalid() re-draws the object as needed, for example to update new information (graph) or
as a result of user interaction (control)

setVisible() shows or hides the control (very powerful function!)

Method

!

In VSTGUI4, RackAFX and these modules, the term “custom view” really means “custom VST-
GUI View Object” and that object can be a view-type object or a control-type object. !

Advanced GUI Design: Module 3! VSTGUI Custom Views 1!
Copyright © 2015 Will Pirkle

!!!
CControl!!

!

!!
VSTGUI Conventions for CControl’s value member!
The most important member variable in the CControl object is probably the value variable which encodes
the current value of the GUI control. You can see that the vmin and vmax limits set the range of the con-
trol. The value variable can be expressed as either “plain” or “normalized.” In almost all VSTGUI controls,

onMouseDown() handle the mouse-down event (for any mouse button)

onMouseUp() handle the mouse-up event (for any mouse button)

onMouseMoved() handle the mouse-move event

setBackground() sets the background bitmap for the view

getBackground() gets the background bitmap for the object

setViewSize() sets the location and dimensions of the view object

getViewSize() returns the coordinates of the view

DescriptionMethod

Attribute Description

value a floating point variable that represents the current value of the control

vmin the minimum value the control can have

vmax the maximum value the control can have

tag the integer value that links the control to some underlying variable in the
plugin

listener the object that will receive notifications when the control is adjusted

Method Description

getValue(), setValue() get/set the current control value

getMin(), setMin() get/set the minimum control value

getMax(), setMax() get/set the maximum control value

getTag(), setTag() get/set the control tag

getListener(), setListener() get/set the listener object that receives control change notifications

beginEdit() called when the user begins to adjust the control

endEdit() called when the user finishes adjusting the control

!

Advanced GUI Design: Module 3! VSTGUI Custom Views 1!
Copyright © 2015 Will Pirkle

the value variable is normalized to a range of 0.0 to 1.0 so the plain and normalized versions are identi-
cal. !!
Since VSTGUI is based on the original VST1.0 API, there is some legacy to deal with here - in the original
VST1 and VST2 APIs, all GUI control elements sent and received normalized values to and from the
plugin object. When you wrote VST1 and VST2 plugins, you needed to provide functions that converted
the normalized values to and from the values that made sense for your plugin object (aka the “plain” val-
ues). In VST3 this changed so that most of these details of converting from plain to normalized are han-
dled for you. The newer version of VSTGUI reflects this in that it allows you to set the min and max values
to non-normalized limits. !

!
The object that handles the interaction with the controls, converting the plain values to and from the nor-
malized values is called an “Editor” in VSTGUI parlance. I don’t particularly like this term because we tend
to think of an Editor as something that is text based. I prefer to call it the “GUI Controller” instead. Let’s
briefly discuss how the Editor object is implemented in your RackAFX, VST and AU plugin projects. The
simplest case is RackAFX:!

!!
The GUI Controller object is built-into your Plug-In via the static library Sock2VST3. It translates the nor-
malized values into plain values for your RackAFX plugin - this is all completely transparent for you and
you do not get to see the GUI Controller object’s code.!!
Remember the listener member variable in CControl? The GUI Editor object is the listener and the GUI
control is connected to this object via the listener member variable. !!
In VST3 and AU, the ported projects contain a VST2/3 or AU Wrapper object which contains an instance
of your RackAFX core (this is also the way most other cross-platform plugin packages operate). The GUI

!

However, the VSTGUI4 objects that are included in the library almost always default to the nor-
malized version in code. So, the knobs, sliders, buttons and the like all transmit/receive values
between 0.0 and 1.0. You can change this by subclassing your own versions of the objects!!!
The three notable exceptions are the COptionMenu, CVerticalSwitch and CHorizontalSwitch, all
of which are set to transmit plain values that are used as integer switching values. For example,
when you set the value of a COptionMenu to “2” you select the third string in the drop-down list
of values (since the control is zero-indexed, value number 2 corresponds to string number 3).

Your GUI
RackAFX Host

GUI Controller RackAFX Plugin
[0, 1]

[0, 1]

[-60, 0]

[-60, 0]

Advanced GUI Design: Module 3! VSTGUI Custom Views 1!
Copyright © 2015 Will Pirkle

Editor is contained within the wrapper object. When you use Make VST or Make AU in RackAFX, you can
look at the editor object code! The AU version has the most verbose code as some of the details in VST3
are included in the core VST code (which you can also see, but you need to dig deeper to find this code). !

!
Once again, the GUI Controller is the listener object. Likewise, since this object is already written for you,
it is mostly transparent to your RackAFX code. When you create Custom View objects in the Advanced
GUI API, you generally will set the listener to the built-in RackAFX/VST/AU editor object. For pure custom
GUIs where you write and implement the GUI purely in C++ code, you will need to implement this object.
Fortunately, I have already supplied you with an Editor object for each RackAFX project - you will need to
fill in the appropriate code. We will get into that in module 6. !!!
The CVSTGUIHelper Object!
In the last module, you learned that you need to add three files to any project where you need to imple-
ment these advanced GUI concepts. I have written an object for you called CVSTGUIHelper which is
going to do most of the work for you in extracting the information about the Custom View for you to use.
The object is declared and implemented in the two files:!!
GUIViewAttributes.h!
GUIViewAttributes.cpp!!
To use it, first #include the .h file in your plugin’s .h file and then declare an instance of the object in the
user variable section of the file. Mine is named !!
#include "plugin.h"
#include "GUIViewAttributes.h" !
class CCustomViews : public CPlugIn
{
public: !
<SNIP SNIP SNIP> !
 // Custom GUI
 virtual void* __stdcall showGUI(void* pInfo); !
 // Add your code here: -- //
 CVSTGUIHelper m_GUIHelper;

!

Your GUI

VST3 or AU Host

GUI Controller RackAFX Core
[0, 1]

[0, 1]

VST3 or AU Plugin

[-60, 0]

[-60, 0]

Advanced GUI Design: Module 3! VSTGUI Custom Views 1!
Copyright © 2015 Will Pirkle

!!!
 // END OF USER CODE --- // !!
 etc… !
We will use this object to glean information about our custom control and we’ll go over the functions as
the time comes. But, first lets dig a little deeper into the XML file and look at some object descriptions
and attributes. The CVSTGUIHelper object is going to decode the information contained in the VST-
GUI_VIEW_INFO struct that is passed to your showGUI() method. !

!
Graphics for your Custom Views!
Many of the GUI objects require graphics files to display properly. The graphics files are called “bitmaps”
in VSTGUI parlance, however they must be .PNG files for use in your GUIs since the RAFX-VST li-
braries expect only PNG file graphics. Fortunately, converting graphic formats is commonplace today. !!
Graphics from the RackAFX GUI Designer: you automatically have access to all of the graphics files
used in the RackAFX GUI Designer. You can find the names of these files easily by inspecting the .uidesc
file and navigating to the <bitmaps> chunk. !!
Graphics from your plugin: you can also add your own graphics to your plugin’s resource stream. This
is documented on my You Tube video here:!!
https://www.youtube.com/watch?v=cp3draeYLPU!!
The process involves 3 steps - if the graphics file is named “knobgraphic.png” then you would do the fol-
lowing:!!
1. copy the .png file into the <project>/resources folder !
2. in the Visual Studio Solution Explorer, find the <project>.rc file and right click on it; choose “View

Code” and add a line to your .rc file like this (notice that the all CAPS name is identical to the lower
case version):!!

///!
//!
// PNG!
//!
KNOBGRAPHIC.PNG PNG! "resources\\knobgraphic.png"!!
3. recompile the RackAFX project - your graphics will now be available in both the RackAFX GUI De-

signer and also your plugin natively!!!!!
!

The CVTSGUIHelper object is NOT a VST Editor. It is a simple object that helps to convert infor-
mation from RackAFX (or VST or AU) about your Custom View into meaningful data you can use
to set up your Custom View/Control.

Advanced GUI Design: Module 3! VSTGUI Custom Views 1!
Copyright © 2015 Will Pirkle

!!
Getting deeper into the RackAFX.uidesc file!
Let’s continue poking around the XML file to see how the C++ objects that make up the GUI are de-
scribed. In the CustomViews project, you can see how the CViewContainer is setup. This is what the
View Container’s attributes look like in RackAFX:!

Notice the Origin and Size attributes. The Origin is the GUI coordinates (x,y) of the upper left corner
of the object relative to it’s parent. Here, the container’s origin is offset 15 pixels to the right, and 15
pixels down. Like many GUI coordinate systems, the x-coordinate increases positively as you move to the
right, and the y-coordinate increases positively as you move down. This flipped coordinate system may be
confusing at first, but it is easy to get used to. The Size is the (width, height) in pixels. !!

!

Always use the CVTSGUIHelper object to create bitmaps for your controls. It has two main
loadBitmap() functions.!!
If you are loading the same graphic you assigned in the RackAFX GUI Designer, use:!!
m_GUIHelper.loadBitmap(info);!!
The info structure contains the name string of the graphic. !!
If you are loading your own graphic from your plugin’s resources, use the graphic file name:!!
m_GUIHelper.loadBitmap(“knobgraphic.png”);!!
You should use the loadBitmap() functions rather than trying to instantiate the objects with the new op-
erator directly. These functions figure out the resource location of your graphic element and load them
accordingly.

Advanced GUI Design: Module 3! VSTGUI Custom Views 1!
Copyright © 2015 Will Pirkle

Next, notice that the VC Name is set to “User ViewContainer 0” — as you learned in the last module, all
VSTGUI CViewContainers must have unique names. RackAFX generated that unique name, but you are
free to change it to something more appropriate for you if you want. Now, examine the XML file and find
the chunk near the top (I have wrapped the text string for easier viewing here):!!
<template background-color="~ GreyCColor" !
! background-color-draw-style="filled and stroked" !
! bitmap="" !
! class=“CViewContainer" !
! maxSize="265, 257" !
! minSize="265, 257" !
! mouse-enabled="true" !
! name="Editor" !
! origin="0, 0" !
! size="265, 257" !
! transparent=“false">!!
<view background-color="~ BlackCColor" !
! background-color-draw-style="filled and stroked" !
! bitmap="lightgreymetal" !
! class="CViewContainer" !
! mouse-enabled="true" !
! origin="15 ,15" !
! rafxtemplate-type="userViewContainer" !
! size="230 ,222" !
! template="User ViewContainer 0" !
! transparent="false" !
! custom-view-name="" !
! sub-controller="" />!
</template>!!
The first part marked <template is the definition of the outer frame that holds the entire GUI. Check out
the attributes:!!
bitmap=“" ! ! ! — there is no background bitmap in this GUI!
class="CViewContainer"!! — this is a CViewContainer object!
maxSize="265, 257" ! ! — the GUI is 265 x 257 pixels!
minSize="265, 257"! ! — the GUI is 265 x 257 pixels (min = max = no resizing of the GUI)
name="Editor"! ! ! — unique name is Editor!
origin="0, 0" size="265, 257"! — origin and size, the main view always has origin = (0,0)!!
Now look at the second part marked <view which describes the single view container that holds the rest
of the controls and examine its attributes - you can now get a feel for how RackAFX creates the XML from
your drag-and-drop environment. Notice that the unique name is called the “template” for all sub-view
containers of the Editor. !!
template="User ViewContainer 0”!!
Just after the <control-tag/> chunk, you will find the definition of the View Container - it looks almost like
an exact repeat of the line above, except the unique name is now labeled “name:”!!
<template background-color="~ BlackCColor" !
! background-color-draw-style="filled and stroked" !

!

Advanced GUI Design: Module 3! VSTGUI Custom Views 1!
Copyright © 2015 Will Pirkle

! bitmap="lightgreymetal" !
! class="CViewContainer" !
! mouse-enabled="true" !
! name="User ViewContainer 0" !
! origin="0, 0" !
! size="230 ,222" !
! transparent="false">!!
Underneath this, you will find the sub-views of this container. The two knob groups and the two LED me-
ter groups are View Containers and have “template” names, for example:!!
<view background-color="" !
! background-color-draw-style="filled and stroked" !
! bitmap="" !
! class="CViewContainer" !
! mouse-enabled="true" !
! origin="10 ,5" !
! rafxtemplate-type="knobgroup" !
! size="75 ,82" !
! template="Rafx KnobGroup 0" !
! transparent="true" !
! custom-view-name="" !
! sub-controller="" />!!
Scrolling down a bit, you will find the Rafx KnobGroup 0 definition with its sub-views. This template/
name paradigm is how containers can be embedded. !!
Now, take a look inside the User ViewContainer 0 chunk and you will find the code for the momentary
button that is connected to the Boost variable - here are its first few attributes:!!
background-offset="0, 0" !
bitmap="medprophetbutton" !
class="CKickButton" !
control-tag="Boost" !
custom-view-name=“MyKickButton”! !

The VSTGUI object named CKickBut-
ton is the momentary on-off button. In
RackAFX, the only buttons like this are
the assignable buttons B1-B3. Howev-
er, you can still assign momentary but-
tons to any RackAFX variable. In this
module, we are going to subclass the
CKickButton object to change its be-
havior. I changed the custom view to
MyKickButton. !!
RackAFX also subclasses the CKick-
Button and we’ll discuss that after we
subclass it for ourselves. On the left is
the Momentary Button setup dialog you
see in the GUI Designer!!

!

Advanced GUI Design: Module 3! VSTGUI Custom Views 1!
Copyright © 2015 Will Pirkle

You can ignore the field marked “Notification” for now - it is part of the RackAFX subclassed CKickButton
and will make sense after completing this module. The main things to note here are the custom view
name and the origin and size attributes. !!!
VSTGUI4 Objects 2:!!
CCoord!
CPoint!
CRect!
CBitmap!!
Its time to get our hands dirty with some more VSTGUI4 objects. These four objects are important since
they are used in almost every VSTGUI control. Most of the control GUI’s require all four of these objects
to be passed into the Constructor so you should get to know them well.!!
CCoord is not actually an object, it is simply a redefinition of the double datatype:!!
typedef double CCoord; ///< coordinate type !
You can essentially use it interchangeably with both the float and double datatypes. !!!
CPoint encapsulates the concept of a (x,y) point or a (width,height) size. It uses a union of CCoords to
create two sets of variables that encode the same information - just use whichever version is most com-
fortable. Since the object is designed to model a point or a size, the variables are named accordingly:!!
CCoord x = x-coordinate!
CCoord y = y-coordinate!!
CCoord v = width = x!
CCoord h = height = y!!
Example:!!
CPoint point; // declare !
point.x = 10.0; // this also sets the v variable to 10.0
point.y = 20.0; // this also sets the h variable to 20.0 !
float width = point.v; // get value as a width and float
double height = point.h; // get value as a height and double !!
CRect encapsulates the concept of a rectangle. All VSTGUI controls and views are described with a
CRect that positions it on the screen and sets the size. The CRect object has the following variables and
methods (this is not the complete list, just the most important):!!
Member Variables: these specify the x and y coordinates for the four sides of the rectangles. !!
CCoord left;!
CCoord right;!
CCoord top;!
CCoord bottom;!

!

Advanced GUI Design: Module 3! VSTGUI Custom Views 1!
Copyright © 2015 Will Pirkle

!
Member Methods: these are self explanatory; see the crect.h file for a bunch more of the simple and help-
ful functions.!!
inline CCoord getWidth () const { return right - left; }!
inline CCoord getHeight () const { return bottom - top; }!!
inline void setWidth (CCoord width) { right = left + width; }!
inline void setHeight (CCoord height) { bottom = top + height; }!!!
There are two normal constructors and one copy-constructor for the object. Here is a rectangle with the
four sides labeled as well as the origin/size attributes:!!!!!!!!!!!!!!!!!!!
The most straightforward way to define the
rect is by supplying the four coordinates
left, right, top and bottom, in the constructor.!!
CRect rect(10, 15, 90, 45); // define a rect with (left, top, right, bottom) !
You can also construct a CRect with the origin and size attributes as CPoints:!!
CPoint origin(10,15);
CPoint size(80,30); !
CRect rect(origin, size); !!
CBitmap encapsulates a graphic that is usually constructed with a graphic file name or what VSTGUI4
calls a CResourceDescription. The bitmap is constructed and “loaded” and the object is passed to the
Custom View’s constructor. The CVSTGUIHelper object will do all of this work for you. !!
Reference counting: the forget() method and CBitmaps!
VSTGUI4 uses reference counting to automatically delete objects that are no longer needed. If you are
new to reference counting, you might want to find a website that explains the basics. Most of the time, we
don’t need to worry about reference counting. But, when we use a CBitmap object as part of the creation
of a custom view object, its reference count is incremented during the view object’s construction. So, after

!

10

15

90

45

origin = (10, 15)

80

30size = (80, 30)

Advanced GUI Design: Module 3! VSTGUI Custom Views 1!
Copyright © 2015 Will Pirkle

we create a custom view object, we will need to decrement the reference count on the CBitmap object(s)
that we used. The decrement function is called forget(). You will see a repeated pattern like this:!!
- create the CBitmap object!
- use the object to create a CView object!
- call forget() on the CBitmap object!!!
VSTGUI4 Objects 3:!!
CControlListener!!
The CControlListener object is critical to VSTGUI’s functionality. This object is not a view or a control. It is
the object that will be receiving notifications whenever the user adjusts the control. There are two possibil-
ities here:!!
1. The VST Editor object is usually the CControlListener - this is a special object in RackAFX, VST and

AU that is setup to get notifications and then set your plugin’s parameters accordingly and described
above.!

2. If you implement an advanced VSTGUI control — either a control that RackAFX does not support like
CCheckBox, or a custom control you design — then you need to supply an object that will act as the
CControlListener and which will alter your plugin’s variables. We will do an example like this later.!!!!

Using showGUI() to decode the custom object name!
When the GUI loads, the framework will call your plugin’s showGUI() method repeatedly for each control
with a custom view. The name of the custom view is transmitted inside the VSTGUI_VIEW_INFO struc-
ture that is passed into showGUI() as an argument. In the last module, we decoded the message variable
and in this module, we will decode the customViewName attribute so that we can create our custom view.
The VSTGUI_VIEW_INFO structure has a bunch of variables that are all related to the custom view. Let’s
examine the attributes. You can find the declaration of the structure in the RAFXViewStructures.h file. !!
// --- custom view stuff!
string! customViewName;!!
We will decode the customViewName variable. Since we are using std::string, we can use the compare()
method to compare the string against MyKickButton. The showGUI() method will now look like this:!!
void* __stdcall CCustomViews::showGUI(void* pInfo)
{
 // --- ALWAYS try base class first in case of future updates
 void* result = CPlugIn::showGUI(pInfo);
 if(result)
 return result; !
 // --- uncloak the info struct
 VSTGUI_VIEW_INFO* info = (VSTGUI_VIEW_INFO*)pInfo;
 if(!info) return NULL; !
 switch(info->message)
 {
 <SNIP SNIP SNIP> !
 case GUI_CUSTOMVIEW:

!

Advanced GUI Design: Module 3! VSTGUI Custom Views 1!
Copyright © 2015 Will Pirkle

 {
 // --- decode the customViewName variable
 if(info->customViewName.compare("MyKickButton") == 0)
 {
 // create the control !
 // return the object pointer, cloaked as void*

 } !
 return NULL; //
 } !
 etc… !!
EXAMPLE: Subclassing the CKickButton object to override mouse-down and mouse-up behavior!!
CKickButton!!
The CKickButton object encapsulates a momentary on/off button or switch. It uses a graphic (bitmap) file
that has both states of the switch in it and then it shows and hides only the part of the image with the ap-
propriate button state as you select the button. For demonstration purposes, we are going to first create a
normal CKickButton object as our custom view. Then, we’ll subclass the object and modify it. !!
The first thing to do is locate the .h file for the CKickButton object. Most of the GUI control objects are lo-
cated in the controls subfolder. At the top of the CustomViews.cpp file, you can see the #include state-
ment:!!
#include "../vstgui4/vstgui/lib/controls/cbuttons.h" !
Notice the relative path, denoted by “../“ which means “in a folder parallel to this one” which is why you
install the vstgui4 folder in the same folder as your RackAFX projects. If you need to have the vstgui4
folder in some other location, you need to alter this relative path. Right click on the #include line and
choose “Open Document …” and find the CKickButton class definition and constructors:!!
We are going to use the first constructor as our preferred method:!
! !
CKickButton(const CRect& size,
 CControlListener* listener,
 int32_t tag,
 CBitmap* background,
 const CPoint& offset = CPoint (0, 0)); !
The arguments are:!!
CRect size ! ! the rectangle that describes the location and dimensions of the control!
CControlListener*! the listener object!
int32_t tag! ! the integer tag value!
CBitmap* background !the image for the control!
CPoint offset ! ! the x,y offset location of the upper left corner of the control, usually 0,0!!
All of this information you need to construct the object arrives packaged inside the VSTGUI_VIEW_INFO
structure that is passed into your showGU() method. We will use the CVSTGUIHelper to extract the in-

!

Advanced GUI Design: Module 3! VSTGUI Custom Views 1!
Copyright © 2015 Will Pirkle

formation. The best way to learn is by example. Look at the VSTGUI_VIEW_INFO definition to see the
variables we will use for the CKickButton example:!!
! int! ! customViewTag;!
! VSTGUIRECT! customViewRect;!
! VSTGUIPOINT customViewOffset;!
! string! ! customViewBitmapName;!
! void* ! ! listener;!!
Notice that the CControlListener pointer is passed as a void* — like the info structure, you will need to
uncloak it to use it. Here is how you use the helper object to extract the information, then use the con-
structor to make the object:!!
// --- decode the customViewName variable
if(info->customViewName.compare("MyKickButton") == 0)
{
 // --- get the needed attributes with the helper
 const CRect rect =
 m_GUIHelper.getRectWithVSTGUIRECT(info->customViewRect);

 const CPoint offsetPt =
 m_GUIHelper.getPointWithVSTGUIPOINT(info->customViewOffset);

 CBitmap* pBitmap = m_GUIHelper.loadBitmap(info); !
 // --- create it!
 CKickButton* pButton = new CKickButton(rect,
 (CControlListener*)info->listener,
 info->customViewTag,
 pBitmap,
 offsetPt);

 // --- decrement ref count
 if(pBitmap)
 pBitmap->forget(); !!
 // --- return control cloaked as a void*
 return (void*)pButton;
} !
Notice the forget() function to decrement the bitmap’s reference count. Compile the code with the stan-
dard CKickButton as above (the sample code has both normal and subclassed versions). This button is
connected to the m_uBoost variable that is either 0 (SWITCH_OFF) or 1 (SWITCH_ON). Ideally, we
would like a button that behaves like this:!!
press button and hold it:!m_uBoost = 1!
release button: !! m_uBoost = 0!!
However, when you load the plugin and try the control, nothing happens! The control’s LED light does not
light up and there is no Boost effect (which amplifies the output by 10X — very audible). What’s going on
here? One way to figure it out is to use the sendStatusWndText() function in RackAFX to send some de-
bug text to the Status Window when the userInterfaceChange() function is called in response to the GUI
button presses. Here is the code:!!
bool __stdcall CCustomViews::userInterfaceChange(int nControlIndex)

!

Advanced GUI Design: Module 3! VSTGUI Custom Views 1!
Copyright © 2015 Will Pirkle

{
 switch(nControlIndex)
 {
 case 45: // 45 is boost control
 {
 if(m_uBoost == 1)
 sendStatusWndText("Boost ON");
 if(m_uBoost == 0)
 sendStatusWndText("Boost OFF"); !
 break;
 } !
 default:
 break;
 } !
 return true;
} !
Now, run the sample project again with the status window open and press the boost button. The status
windows shows what is happening:!

!
When you press the CKickButton, you get an ON (1) signal immediately followed by an OFF (0) signal.
This is the default behavior of the CKickButton in VSTGUI4. We can modify the behavior by subclassing

!

Advanced GUI Design: Module 3! VSTGUI Custom Views 1!
Copyright © 2015 Will Pirkle

the control and changing the two functions that handle the mouse-down and mouse-up events. We can
modify it in multiple ways:!!
- transmit an ON signal when the button is held down, and an OFF signal when the button is released

(this is what we want)!
- transmit a notification on the mouse-down event only!
- transmit a notification on the mouse-up event only*!!
(*) this is the way the Assignable Buttons B1, B2 and B3 work in RackAFX when not in latching mode! !!
To make this Boost button work properly, we need to modify the control to give the ON/OFF notifications
in the first way above. To do that we will subclass the control. !!
Subclassing CKickButton!
Subclassing a VSTGUI object is no different from subclassing any other C++ object - you create a derived
class and override/alter any functions you need to. For this example, we need to alter the two functions
that get called when the mouse is down or up. It is important to make your subclassed object names as
unique as you can to avoid name collisions. I have added my initials WCP to the end of the class name.
In Visual Studio, create a new Class (right-click on the Solution and choose Add->Class) and give it CK-
ickButton as the base. Here are some things to note:!!
- VSTGUI4 is namespaced !
- in many (but not all) virtual functions, there is a macro for C++11 support called VSTGUI_OVER-

RIDE_VMETHOD which is simply tacked onto the end of the function!!!
#ifndef __WPKICKBUTTON__
#define __WPKICKBUTTON__
#include "../vstgui4/vstgui/lib/controls/cbuttons.h" !
/* --
 CKickButtonWCP
 Custom VSTGUI Object by Will Pirkle
 Created with RackAFX(TM) Plugin Development Software
 www.willpirkle.com
 ---*/
namespace VSTGUI { !
class CKickButtonWCP : public CKickButton
{
public:
 // - constructor
 CKickButtonWCP(const CRect& size,
 CControlListener* listener,
 int32_t tag,
 CBitmap* background,
 const CPoint& offset = CPoint (0, 0)); !
 // - mouse down override
 virtual CMouseEventResult onMouseDown(CPoint& where,
 const CButtonState& buttons)
 VSTGUI_OVERRIDE_VMETHOD;

 // - mouse up override
 virtual CMouseEventResult onMouseUp(CPoint& where,
 const CButtonState& buttons)

!

Advanced GUI Design: Module 3! VSTGUI Custom Views 1!
Copyright © 2015 Will Pirkle

 VSTGUI_OVERRIDE_VMETHOD; !
private:
 float fEntryState;
}; !
} !
I will leave it up to you to study the way VSTGUI works as far as the value changes occur - you are going
to need to step into the code and get a little dirty if you want to get good at VSTGUI programming. To
make life simple, we will just cut and paste the original onMouseDown() and onMouseUp() code from the
CKickButton, and then modify that. The constructor does nothing but call the base class so it is not shown
here, but you can examine it in the sample code. The only modification that I made was to comment out a
few lines of code. You can see that the function valueChanged() gets called twice, once with the max val-
ue (1) and again with the min value (0) which is accessed with the getMin() function. This is what is caus-
ing the immediate ON/OFF behavior of the control. !!
In all CControl based objects, the editing/changing of the control’s underlying value member is framed
with two function calls, beginEdit() and endEdit(). You can see that both of these functions are called in
the mouse down method, and this is causing the button’s graphic to not appear to switch states. !!
The first part of the fix is to comment out the code that resets the value variable to the minimum, and the
code that calls valueChanged() a second time. The second part of the fix is to comment out the endEdit()
code. !!
VSTGUI::CMouseEventResult CKickButtonWCP::onMouseDown(CPoint& where,
 const CButtonState& buttons)
{
 if (!(buttons & kLButton))
 return kMouseEventNotHandled; !
 value = 1.0;
 fEntryState = value;

 // start the edit/change
 beginEdit(); !
 if (value)
 valueChanged ();
 //value = getMin ();
 // valueChanged ();
 if (isDirty ())
 invalid ();
 //endEdit ();

 return onMouseMoved (where, buttons);
} !
We also need to alter the mouse-up handler. First, another redundant valueChange() method is com-
mented out, and I’ve added the endEdit() function call to complete the edit/change operation after the
mouse button is released. !!!!!!
!

Advanced GUI Design: Module 3! VSTGUI Custom Views 1!
Copyright © 2015 Will Pirkle

VSTGUI::CMouseEventResult CKickButtonWCP::onMouseUp(CPoint& where,
 const CButtonState& buttons)
{
 //if (value)
 // valueChanged ();
 value = getMin ();
 valueChanged ();
 if (isDirty ())
 invalid ();
 // added this
 endEdit ();

 return kMouseEventHandled;
} !
Using this new C++ object as the custom control is simple since it uses the same constructor we imple-
mented with CKickButton. You add the necessary #include statement for the new object file and then use
the new constructor. At the top of the .cpp file:!!
#include "CustomViews.h"
#include "../vstgui4/vstgui/lib/controls/cbuttons.h" // normal CKickButton
#include "KickButtonWCP.h" // for new subclassed control !
And, then just use the constructor in the showGUI() method: !!
// --- get the needed attributes with the helper
const CRect rect = m_GUIHelper.getRectWithVSTGUIRECT(info->customViewRect);
const CPoint offsetPt = m_GUIHelper.getPointWithVSTGUIPOINT(
 info->customViewOffset);
CBitmap* pBitmap = m_GUIHelper.loadBitmap(info); !
// --- create it!
CKickButtonWCP* pButton = new CKickButtonWCP(rect,
 (CControlListener*)info->listener,
 info->customViewTag,
 pBitmap,
 offsetPt); !
// — ordinary CKickButton
//CKickButton* pButton = new CKickButton(rect,
// (CControlListener*)info->listener,
// info->customViewTag,
// pBitmap,
// offsetPt);

// --- decrement ref count
if(pBitmap)
 pBitmap->forget();

// --- return control cloaked as a void*
return (void*)pButton; !
Now, compile the code again and notice the behavior change - when you hold the BOOST button down,
the control engages and when you release it, it disengages. !!

!

Advanced GUI Design: Module 3! VSTGUI Custom Views 1!
Copyright © 2015 Will Pirkle

CKickButton in the RackAFX GUI Designer! !
Because of the mouse issue with CKickButton, this was
one of the first controls I subclassed in RackAFX. In my
subclassed version, you can select how you want the
notifications to occur - on mouse-up and down, or just
mouse-down or mouse-up only. When you drag a new
CKickButton control into the GUI designer, the attribute
dialog looks like what you see on the left. You choose
how you want the notifications to occur with the Notifica-
tion field. The Custom View name is used to decode the
information. Here it is RafxKickButtonDU where DU
stands for Down and Up. Note that as you change the
Notification field, the Custom Name changes accordingly.
The name encodes the custom behavior that is passed to
the control. You can see the details of my custom object
in both the VST and AU ported projects. You can also
find the code that decodes the string and sets the vari-
able on the object. !!!!

Sliver Challenge:!
Modify the CKickButtonWCP object (or better yet, create your own subclass) that mimics the custom con-
trol in RackAFX and allows you to choose the kind of mouse behavior you want - mouse down/up, mouse
down or mouse up. You might also want to include the original CKickButton mouse implementation as the
“classic” style. Encode the mouse behavior in the Custom View name string. !!!
EXAMPLE: Subclassing the CAnimKnob object to override the draw() method!!
CAnimKnob!!
The CAnimKnob object encapsulates a knob control that is “animated” — this is a more advanced version
of the original VSTGUI control called CKnob. The animated knob uses a graphic that is arranged like a
film-strip — a vertical set of images that represent the knob in all its different positions. When you move
the knob, the draw() method crops the graphic to show you just the single image that represents the con-
trol in one position. In this example, we are not going to mess with the cropping code. Instead, we are
going to alter the value variable to make the knob move in reverse. So, when you drag the mouse up, the
knob will turn in the counterclockwise direction. This is not particularly useful on its own, but it will get you
started on the draw() method so you can try to implement the Challenge at the end of this section. !!
Locate the .h file for the CAnimKnob object. At the top of the CustomViews.cpp file, you can see the #in-
clude statement:!!
#include "vstgui/lib/controls/cknob.h" !
We are going to use the second constructor as our preferred method:!!
CAnimKnob(const CRect& size,
 CControlListener* listener,
 int32_t tag,
 int32_t subPixmaps,
 CCoord heightOfOneImage,

!

Advanced GUI Design: Module 3! VSTGUI Custom Views 1!
Copyright © 2015 Will Pirkle

 CBitmap* background,
 const CPoint& offset = CPoint (0, 0)); !
! !
The arguments are:!!
CRect size ! ! ! the rectangle that describes the location and dimensions of the control!
CControlListener*! ! the listener object!
int32_t tag! ! ! the integer tag value!
int32_t subPixMaps! ! the number of animation frames in the knob graphic!
CCoord heightOfOneImage! the height of one image “frame” in the animation strip!
CBitmap* background !! the image for the control!
CPoint offset ! ! ! the x,y offset location of the upper left corner of the control, usually 0,0!!
My derived class is named CKnobWCP and is packaged in the KnobWCP.h and KnobWCP.cpp files. We
will make our derived constructor follow the ordinary object and we override the draw() method to change
the way the control draws. Here is my subclassed control definition:!!
#ifndef __cknobwcp__
#define __cknobwcp__ !
#include "../vstgui4/vstgui/lib/controls/cknob.h" !
/* --
 CKnobWCP
 Custom VSTGUI Object by Will Pirkle
 Created with RackAFX(TM) Plugin Development Software
 www.willpirkle.com
 ---*/ !
namespace VSTGUI { !
class CKnobWCP : public CAnimKnob
{
public:
 // --- constructor
 CKnobWCP(const CRect& size, CControlListener* listener,
 int32_t tag, int32_t subPixmaps, CCoord heightOfOneImage,
 CBitmap* background, const CPoint& offset = CPoint (0, 0)); !
 // --- one function to override
 virtual void draw (CDrawContext* pContext) VSTGUI_OVERRIDE_VMETHOD;
}; !
} !
#endif !
First, have a look at the normal drawing code for CAnimKnob (again, you need to examine the code and
figure out the basic way the function works on your own). The argument is a CDrawContext which is the
platform independent drawing object that renders the graphic. We will discuss this object more in module
5 when we draw our own graphics. !!
The code that actually renders the graphic is:!!
getDrawBackground()->draw(pContext, getViewSize (), where);

!

Advanced GUI Design: Module 3! VSTGUI Custom Views 1!
Copyright © 2015 Will Pirkle

!
getDrawBackground() returns a pointer to the CBitmap object that is the animation strip. The CBitmap’s
draw() function is the code that renders the graphic into the device context. !!
You can see that the logic uses the value variable in several locations (in bold). This code sets up a
CPoint variable named where that is used in the bitmap’s draw function below it:!!
getDrawBackground()->draw(pContext, getViewSize (), where); !
This CPoint object where tells the draw function where to clip the graphic. !!
void CAnimKnob::draw(CDrawContext *pContext)
{
 if(getDrawBackground())
 {
 CPoint where (0, 0);
 if (value >= 0.f && heightOfOneImage > 0.)
 {
 CCoord tmp = heightOfOneImage * (getNumSubPixmaps () - 1);
 if (bInverseBitmap)
 where.v = floor ((1. - value) * tmp);
 else
 where.v = floor (value * tmp);
 where.v -= (int32_t)where.v % (int32_t)heightOfOneImage;
 } !
 getDrawBackground()->draw(pContext, getViewSize (), where);
 }
 setDirty (false);
} !
If we want to invert the behavior of the control there are two options:!
• invert the value variable and reverse it to the range [1, 0]!
• subclass the CBitmap control, override its draw() function, and alter the code to reverse the location of

the where variable!!
The first option is the simplest and actually the cleanest option. If we subclassed CBitmap to !
CBitmapWCP, then we would need to do more work, replacing the CAnimKnob’s bitmap object with our
new one. Since we are going to do some custom drawing of our own in module 6, we will just alter the
value variable. The code to invert the value is simple and straightforward. However you will note that I first
save the original value as tempValue and then restore it at the end of the function. You could simply im-
plement the reverse logic to invert the value back to its original. However, I found that in overriding other
controls over time, I’ve learned to use the save/restore paradigm. In some cases, I do not alter the origi-
nal value, but instead use the tempValue variable. There are reasons for doing this in some cases. Here it
is cleaner to change the value variable directly. !!
Here is the subclassed method:!!
void CKnobWCP::draw(CDrawContext *pContext)
{
 if(getDrawBackground ())
 {
 // --- in order to make a reverse knob,
 // need to alter the value variable
 // --- invert so that 0->1 and 1->0
 double tempValue = value; // save it

!

Advanced GUI Design: Module 3! VSTGUI Custom Views 1!
Copyright © 2015 Will Pirkle

!
 // --- invert so that 0->1 and 1->0
 value = -value + 1.0; !
 CPoint where (0, 0);
 if(value >= 0.f && heightOfOneImage > 0.)
 {
 CCoord tmp = heightOfOneImage * (getNumSubPixmaps () - 1);
 if (bInverseBitmap)
 where.v = floor ((1. - value) * tmp);
 else
 where.v = floor (value * tmp);
 where.v -= (int32_t)where.v % (int32_t)heightOfOneImage;
 }

 getDrawBackground()->draw(pContext, getViewSize(), where); !
 // --- restore old value
 value = tempValue;
 }
 setDirty (false);
} !
And here is the instantiation - identical to the normal constructor:!!
 !
 // --- custom reverse version
 CKnobWCP* pKnob = new CKnobWCP(rect,
 (CControlListener*)info->listener,
 info->customViewTag,
 info->customViewSubPixmaps,
 info->customViewHtOneImage,
 pBitmap,
 offsetPt);

 // --- decrement ref count
 if(pBitmap)
 pBitmap->forget(); !!
Compile the code with this new object (just uncomment and re-comment the code as needed) and watch
what happens with the control. It initializes itself to the inverted (opposite) location. And, as you move the
mouse up and down, it moves in the opposite direction. Notice also that the data in the Edit control (below
the knob) matches the location of the control — it is also opposite of the normal knob. The reason this
works so easily is that the Edit control is connected to the same control-tag as the knob. In a sense, they
then share the same value variable. So, the Edit readout matches without us needing to make a “reverse
edit control” or other nonsense. !!
Object Destruction?!
You might notice that there is no code to destroy our custom views. The good news is that we don’t need
to worry about destruction! The reason is that VSTGUI4 uses reference counting to delete our objects
when they are no longer needed. !!!!
!

Advanced GUI Design: Module 3! VSTGUI Custom Views 1!
Copyright © 2015 Will Pirkle

Gold Challenge:!
In the CustomViews project that accompanies this module, you will find many more custom view object
decoding and instantiation below the CKickButton and CAnimKnob cases in the logic. In these examples,
I show you how to:!!
• decode more information from the VSTGUI_VIEW_INFO using the CVSTHelper object!
• instantiate different controls, all are simply normal VSTGUI4 objects!!
The following objects are included:!!
COnOffButton!
CVerticalSlider!
COptionMenu!
CVuMeter!!
Why give us examples of Custom Views of regular controls? !
There are three reasons for creating “regular” custom controls. First, each of these examples shows more
customization possibilities as well as new items in the VSTGUI_VIEW_INFO struct. You need to play with
the CustomViews project and in some cases add some more controls, then set their Custom Names to
the values in the function (or whatever you want - it’s up to you to decode them). Doing these examples
will help you learn and understand.!!
Second, in module 4 you will learn how to cache the custom view pointers and use them to modify the
GUI programmatically from within your plugin. This allows you to make simple adjustments to the GUI if
needed, such as showing/hiding objects, changing text, etc…!!
Third, in module 5 we will use Custom Views to implement objects that are not included in the RackAFX
GUI designer. Examples include the check-box and text-button controls as well as advanced views like
the Open GL, splitter, movie and gradient views.!!
Once you can instantiate these objects and use them, try to think of other customizations you might like.
Here are some details:!!
COnOffButton!
There are already 2 COnOffButton objects in the UI, one toggle switch for BOOST and the other toggle
for MUTE. Make a Custom View for one or both. This one is easy - the arguments for the constructor are
identical to the CKickButton. !!
CVerticalSlider!
You will need to drag a Vertical Slider control into the GUI Designer and connect it to one of the Volume
controls, then give it the correct Custom View name as in the code. This object introduces another
CBitmap — it requires two bitmaps, one for the slider “groove” and the other for the slider “handle” (also
called the “paddle” or “thumb”). Several of the VSTGUI objects require this second bitmap. The example
code shows you where to find it in the VSTGUI_VIEW_INFO structure. The CVerticalSlider (and CHori-
zontalSlider) both require that you input the min and max in the constructor - for normal controls, they will
be 0.0 and 1.0 respectively. !!
COptionMenu!
You will need to drag an Option Menu control into the GUI Designer and connect it to one of the Volume
controls, then give it the correct Custom View name as in the codeThis example shows several more at-
tributes that can be set; this object shares attributes with CTextLabel and CTextEdit controls. These con-
trols allow you to place a frame around them if you want. By examining the way this control is constructed
and its attributes set, you can also make your own CTextLabel and CTextEdit subclasses. !

!

Advanced GUI Design: Module 3! VSTGUI Custom Views 1!
Copyright © 2015 Will Pirkle

!
These controls are also color-intensive and have several different color attributes. In VSTGUI4, the CCol-
or object represents a color consisting of red, green, blue, and alpha values.!!
In addition, there are several styles available for this family of controls and the example code shows you
how to wire-or these style-constants into a single style variable. In this control, you can dictate a rounded-
rect style where the corners are round and the object is oval shaped as well as a no-frame style that
omits the frame component. !!
CVuMeter!
The last object is a VU meter; you can set the Custom View name for one of the two meters on the GUI to
play with this control. Like the slider, it requires two graphics, on for the LED on-state and the other for the
OFF state. The drawing code figures out where to crop each bitmap so that the LED is partially on/off de-
pending on the current value. Interestingly, this control has no control-tag variable in its constructor so you
need to set it manually with setTag(). !!
Here are the rest of the items in the VSTGUI_VIEW_INFO structure that you will learn about by adding
your own Custom View names in RackAFX, then watching how they are constructed in the plugin’s
showGUI() function.!!!
! // --- custom view stuff!
! char*! ! customViewName;!
! int! ! customViewTag;!
! VSTGUIRECT! customViewRect;!
! VSTGUIPOINT customViewOffset;!
! char*! ! customViewBitmapName;!
! char*! ! customViewHandleBitmapName;! // sliders!
! char*! ! customViewOffBitmapName;! ! // LED Meters!
! char*! ! customViewOrientation;!! ! // sliders, switches, meters!
! !
! void*! ! customViewBackColor;! ! // CColor cloaked!
! void*! ! customViewFrameColor;! // CColor cloaked!
! void*! ! customViewFontColor;! ! // CColor cloaked!
! int! ! customViewFrameWidth;!
! int! ! customViewRoundRectRadius;!
! bool! ! customViewStyleNoFrame;!
! bool! ! customViewStyleRoundRect;!!
! int! ! customViewHtOneImage;! // CAnimKnob!
! int! ! customViewSubPixmaps;! // CAnimKnob!!
! // --- 9-part tiled offsets!
! bool! ! isNinePartTiledBitmap;!
! double! ! nptoLeft;!
! double! ! nptoTop;!
! double! ! nptoRight;!
! double! ! nptoBottom;!!
In module we covered:!
• how VSTGUI Views and Controls work!
• normalized versus plain GUI values!
• how to poke around in the RackAFX.uidesc file to see how C++ objects are described in XML!

!

Advanced GUI Design: Module 3! VSTGUI Custom Views 1!
Copyright © 2015 Will Pirkle

• decoding the customViewName member of the VSTGUI_VIEW_INFO structure in the showGUI()
method!

• instantiating several VSTGUI objects!
• creating Custom Views in your code with normal VSTGUI objects!
• creating Custom Views in your code with subclassed VSTGUI objects!
• overriding mouse behavior!
• overriding the draw() function!!!
References:!!
VSTGUI4 Files and Documentation: http://sourceforge.net/projects/vstgui/

!

http://sourceforge.net/projects/vstgui/

